
 

Aeroheating Thermal Analysis Methods for Aerobraking Mars Missions 

Ruth M. Amundsen and John A. Dec 
National Aeronautics and Space Administration 

Langley Research Center 
Hampton, VA 23681 

 
Lt Benjamin E. George 
United States Air Force 
Kirtland Air Force Base 
Albuquerque, NM 87111  

ABSTRACT 

Mars missions often employ aerobraking upon arrival at Mars as a low-mass method to gradually reduce the orbit 
period from a high-altitude, highly elliptical insertion orbit to the final science orbit.  Two recent missions that made 
use of aerobraking were Mars Global Surveyor (MGS) and Mars Odyssey.  Both spacecraft had solar arrays as the 
main aerobraking surface area.  Aerobraking produces a high heat load on the solar arrays, which have a large sur-
face area exposed to the airflow and relatively low mass.  To accurately model the complex behavior during aero-
braking, the thermal analysis must be tightly coupled to the flight mechanics, aerodynamics, and atmospheric 
modeling efforts being performed during operations.  To properly represent the temperatures prior to and during the 
drag pass, the model must include the orbital solar and planetary heat fluxes.  The correlation of the thermal model 
to flight data allows a validation of the modeling process, as well as information on what processes dominate the 
thermal behavior.  This paper describes the thermal modeling method that was developed for this purpose, as well as 
correlation for two flight missions, and a discussion of improvements to the methodology. 

INTRODUCTION 

Two recent missions to Mars have used aerobraking at Mars as a method for decreasing required fuel mass: Mars 
Global Surveyor (MGS) and Mars Odyssey.  Aerobraking is the process of skimming the spacecraft through the 
planetary atmosphere at periapsis, decreasing its speed and thus lowering apoapsis.  This method saves substantially 
on the amount of fuel required to achieve the science orbit.  The solar panels constitute the main drag on the space-
craft, and as low-mass “wings”  they bear the brunt of aeroheating.  The duration of aerobraking is often critical, due 
to high mission costs during that period, and because the duration of aerobraking affects the final science orbit. 

The Mars Global Surveyor spacecraft launched in November of 1996 and arrived at Mars in September 1997.  The 
initial orbit was highly elliptical, with an apoapsis of 54,026 km and a 45-hour period.  Aerobraking was used to 
slow the spacecraft and decrease the orbit altitude to allow insertion into a final science orbit.  The aerobraking ef-
fort was originally planned to take four months to bring the orbit apoapsis to 450 km.  Early in the aerobraking, 
aerodynamic pressure caused one of Surveyor's two solar panels to bend backward slightly.  The panel in question 
had been damaged shortly after launch.  This event led to a pause in aerobraking and eventually a more conservative 
approach toward aerobraking, to put less stress on the damaged solar panel.  Because of the discovery of the dam-
aged solar panel which led to the mid-mission change in MGS aerobraking operations, only the first 15 passes were 
done in the original flight corridor at relatively high atmospheric densities with a comparatively high aeroheating 
environment.  At the start of the aerobraking phase of the mission, the mission plan was to progressively lower the 
aerobraking altitude due to uncertainties in the density of the Mars atmosphere.  Since correlation of the thermal 
model to high aeroheating environments was desired, pass 15, with the highest heating experienced, was the first 
one considered for correlation. 

The Mars Odyssey mission was to use a similar mission plan as MGS, with solar arrays bearing the brunt of aero-
braking.  Thus it was important to fully understand the MGS mission performance.  In particular, it was important to 
determine the thermal behavior of the solar arrays, since they were the limiting factor in aerobraking.  If more ag-
gressive aerobraking could be used (i.e., deeper cuts into the atmosphere on each pass), it would bring down the total 
time and cost for the Odyssey mission, as well as improving the ability to control the final science orbit.  MGS flight 
data was used to correlate a thermal model of the solar arrays, to ensure that the behavior during aerobraking was 
fully quantified.  Then, this information was used in the thermal analysis of Odyssey’s aerobraking which ultimately 
affected mission planning. 



 

The Mars Odyssey spacecraft was launched on a Delta II launch vehicle from Cape Canaveral Air Force Station on 
April 7th 2001.  On October 23rd 2001, the spacecraft performed a propulsive maneuver to insert itself into an 18.5-
hour elliptic orbit around Mars. To achieve the 2-hour, 400km circular, sun-synchronous mapping orbit, Odyssey 
used the multipass aerobraking technique.  The Magellan spacecraft (at Venus) was the first three-axis stabilized 
spacecraft to perform this type of multipass aerobraking.1  To control periapsis altitude, Magellan planned on using 
thermocouple data to signal the need to perform a periapsis raise maneuver, which would raise the periapsis altitude, 
lower the maximum atmospheric density experienced, and thus lower the aerodynamic heating on the spacecraft and 
solar arrays.  In the literature, it was noted that Magellan experienced at least 5 thermocouple failures prior to the 
start of aerobraking.2   It is unclear from the available literature if any of these thermocouples were located on the 
solar arrays and were to be used during operations.  It is also unclear whether or not there were any thermal models 
developed and used during the Magellan aerobraking process to make up for the inoperable thermocouples, but there 
are references to heat rate and surface temperature calculations being performed using a direct simulation Monte 
Carlo particle method.3,4  In any event it is clear that in the early 1990’s the limitations of computers would have 
prohibited the use of a detailed enough finite element or finite difference model that could have been run in a timely 
enough fashion to be used during operations.  Mars Odyssey was the first multipass aerobraking mission to make 
use of detailed 3-dimensional finite element thermal model during operations to predict the temperatures for future 
orbits and reconstruct the solar panel temperatures for past orbits.  This model, used in addition to a 1-dimensional 
model, provided detailed, 3-dimensional temperature profiles of the solar array, transient plots of maximum material 
temperatures, and transient plots of thermocouple temperatures.  

SOLAR ARRAY DESCRIPTION 

The function of the spacecraft solar arrays on both MGS and Mars Odyssey was two-fold.  The primary function 
was to provide a stable power source for the spacecraft and scientific instruments during all phases of the mission.  
Second, during each drag pass of aerobraking, the solar arrays provided a large surface area on which the aerody-
namic forces could act.  For example, the Odyssey spacecraft began aerobraking by slicing through the Martian at-
mosphere at a relative velocity of about 4.57 km/s.  Despite low atmospheric densities of about 80 kg/km3, these 
high velocities produce significant aerodynamic heating on the solar array and spacecraft.  Careful design and con-
struction of the solar array allows it to withstand this aerodynamic heating.  

The solar arrays on both spacecraft utilized a very similar layered construction of low density materials.  Each panel 
consists of five layers; the first three make up the structural components and provide the structural integrity during 
launch and throughout aerobraking.    The solar array structure is a sandwich construction with a 0.19 mm facesheet 
of M55J graphite composite, an aluminum honeycomb core (25 mm for MGS, 19.05mm for Odyssey), and another 
0.19 mm M55J composite facesheet.  The next layer is a 0.051mm Kapton sheet that is co-cured to the M55J graph-
ite beneath it.  Last is the solar cell layer, which consisted of the following, from the outside in: 0.152 mm cover 
glass, a layer of DC93500 adhesive, the solar cells themselves, a metal backing to the solar cells, and a layer of 
CV2568 adhesive that held the cells down to the Kapton sheet. On MGS, the solar cells were silicon on the outboard 
section of the array, and gallium arsenide (GaAs) on the inboard section, 0.19 mm thick.  On Odyssey, all cells were 
GaAs.  Figure 1 shows a cross-sectional view of the solar array at a representative location.  On both arrays, certain 
sections of the standard 1.0 lb/ft3 aluminum honeycomb core were replaced with a higher density core of the same 
thickness.  Also, to reinforce at hard points, a thicker facesheet was used in some locations.    

 

 
Figure 1. Cross-section of solar array (not to scale). 

The MGS system is shown in Figure 2, and the Odyssey system in Figure 3.  On MGS, the two panels are mounted 
on gimbals extending from the spacecraft.  Since the extent of damage to the solar array on the -Y side of the space-



 

craft was unknown, only the +Y array was modeled and compared to flight data.  The thermocouple locations are 
shown in Figure 4.  On Odyssey, the panels are commonly referred to as the +X, -X, and mid panels.  The +X and –
X panels are mirror images of each other, while the mid panel has a unique geometry.  Figure 5 shows a 3-
dimensional geometric representation of the solar array as well as the five thermocouple locations.  There is one 
thermocouple on the mid panel on the solar cell side of the array.  The +X and – X panels each have one thermocou-
ple on the solar cell side and one on the “hot”  facesheet side.  On the engineering drawings5, the thermocouples are 
designated T1, T2, T3, T4, and T5.   

 
Figure 2.  MGS spacecraft and solar arrays (Courtesy JPL). 

 Velocity Vector  
Figure 3. Mars Odyssey (Thermal Desktop model in the aerobrake configuration). 
 

 
Figure 4.  MGS flight temperature sensor locations. 

 
Figure 5.  Mars Odyssey solar array and flight temperature sensor locations. 
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The MGS array had some white paint added at the edges to pre-cool regions of the array expected to receive the 
highest aerodynamic heating, and also had Kapton sheets layered on the corners to provide additional thermal mass 
to mitigate heating.  To protect the Odyssey array from aerodynamic heating, a 0.072mm thick layer of multilayer 
insulation (MLI) was placed on the facesheet exposed to the aerodynamic heating and around the edges of the M55J 
graphite facesheet.  The bulk of the MLI was on the facesheet surface, and a small portion wrapped around the edges 
and terminated on the solar cell side.   

THERMAL MODEL DEVELOPMENT 

The thermal methods have been described in detail elsewhere6, but the basic methodology will be presented here.  
The thermal analysis of the solar array had three main components: the view factor and orbital heating analysis, the 
aerodynamic heating analysis, and the computation of solar array temperatures.  The calculations were performed in 
two flight regimes.  One regime was the vacuum phase where the spacecraft was in orbit around Mars, but out of the 
atmosphere.  The thermal environment in this phase was dominated by the solar and planetary heating with negligi-
ble aerodynamic heating.  The second regime was the aerobraking phase, or drag pass, where the spacecraft made its 
excursion into the atmosphere.  The thermal environment in this phase was dominated by the aerodynamic heating 
with aerodynamic heating being roughly 60 times greater than the orbital heating.  Temperatures were calculated for 
both flight regimes.  Accurate calculation of the solar/planetary flux during flight, as well as aerodynamic heating 
during drag passes, requires that the thermal analysis be tightly coupled to the flight mechanics, aerodynamics, and 
atmospheric analysis.  The orbital heating and view factor analysis, or radiation model, was developed using Ther-
mal Desktop, a commercially available software package7.  The radiation model was developed using engineering 
drawings of the spacecraft and solar array.5  For Odyssey, view factor and heat rate calculations were performed for 
several different solar array configurations and spacecraft orientations.  First, calculations were made with the 
spacecraft and solar array in its vacuum phase configuration; the spacecraft oriented with its high gain antenna 
pointed towards Earth and the solar array normal to the sun.  In transitioning to the aerobrake configuration, both 
heat rates and view factors to space for the solar array were calculated as the solar array articulated to its stowed 
position. As the spacecraft slewed to the aerobraking configuration, the solar array’s view factors to space did not 
change, so view factors did not have to be recalculated for that maneuver.   

For the detailed thermal solution, a full thermal model was developed for the solar array only.  For both missions, 
the solar arrays were mounted on gimbals with a low thermal conductance to the rest of the spacecraft, which mini-
mized the conductive effect of the spacecraft on the array.  The view factors to the spacecraft as well as solar and 
planetary fluxes from the radiation model were applied to the solar array model.  This method allowed much more 
detail to be captured in the solar array thermal model without sacrificing solution time by having to include space-
craft elements in that model.   

Radiation models 

The radiation models of the spacecraft and solar arrays were developed in Thermal Desktop.  The MGS model is 
shown in Figure 6 (arrows are used to indicate view angles to planet and Sun).  The Odyssey radiation model is 
shown in Figure 7.  The radiation models included all variations of optical properties, and were used to calculate 
viewfactors to space and orbital heat fluxes (solar and Martian). 

 
Figure 6.  Radiation model in Thermal Desktop of MGS spacecraft/solar array. 



 

 

 
 

Figure 7.  Thermal Desktop model of Mars Odyssey in the vacuum phase configuration (view from Earth). 

Heating Model 

The aerodynamic heating analysis consisted of calculating the atmospheric density, the spacecraft velocity relative 
to the atmosphere, and the heating coefficient for points spatially across the array.  Using this information, the inci-
dent aerodynamic heating was calculated using equation 1, 

Hi CVQ ⋅⋅⋅= 3

2

1 ρ  (1) 

where ρ is the atmospheric density, V is the relative velocity, and CH is the heat transfer coefficient.  This calcula-
tion was made at 5 second intervals throughout the aerobraking pass to give a transient representation of aerody-
namic heating.   The flight mechanics team reconstructed the aerobraking pass and provided the relative velocity.  
The heating coefficients were calculated using a Direct Simulation Monte Carlo (DSMC) particle method.  The den-
sity was calculated using acceleration readings from the flight accelerometer.  The correlation of the atmospheric 
density to the accelerometers was made using DSMC which modeled the interaction of atmospheric particles with 
the entire spacecraft.  The relation between the density and the acceleration is captured in equation 2, 
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where m is the known mass of the spacecraft, a is the acceleration due to atmospheric drag, cd is the drag coefficient 
determined using DSMC, ρ is the atmospheric density, and V is the velocity relative to the atmosphere.  Using the 
density and the relative atmospheric velocity, the heating coefficients were calculated.   Due to the long run times 
needed to perform the DSMC computations, an aerothermodynamic database was developed prior to aerobraking.  
Then for each time step, the density was calculated by interpolating the accelerometer data, and the heating coeffi-
cients across the array were calculated by interpolating between density and relative velocity.  The interpolation 
error on the heating coefficients was calculated to be about 2%, which was within the accuracy of the DSMC calcu-
lations.   The heat transfer coefficients ranged from a peak value of 0.90 to a low value of 0, and included the sur-
face accommodation coefficient. The model also accounts for reflected heat, which was approximated empirically, 
and is a function of the incident heat flux and surface temperature.   For MGS, the empirical equation is shown in (3) 
and (4), and for Odyssey it was as shown in (5). 
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where Twall is the surface temperature of the solar array.  These calculations provided an accurate representation of 
the aerodynamic heating as well as reflected heating that was a function of time as well as position on the solar ar-
ray.   

Thermal Model 

The full 3D thermal models for these missions were created in MSC/PATRAN8.  This was done for two reasons.  
One was that existing FORTRAN code would allow simple inclusion of the aeroheating fluxes in PATRAN.  The 
other was that the structural analysis of thermal stresses would be easily accomplished using existing methods.  
Normally, it is not more efficient to develop two models.  However, in this case time constraints drove the use of 
existing, easily adapted methods.  The duplicate model in Thermal Desktop was necessary since orbital capabilities 
do not exist within MSC/PATRAN. 

The solar arrays were modeled in PATRAN as five distinct layers, as shown earlier in Figure 1.  Each layer was 
modeled with plate elements, except for the aluminum core, which was modeled with solid elements.  The layers 
were spaced apart, so that they could be connected via a contact conductance.  This value could be varied to account 
for the adhesives used between the layers.  Also, it accounted for the reduced contact area between the facesheets 
and honeycomb core.  The solar cells were mounted over more than 90% of the surface on one side.  Since the ther-
mocouples that were used to correlate were in locations where coverage by solar cells is complete, it was decided to 
approximate the solar cell coverage as 100% to simplify modeling.  The solar cell layer properties were calculated as 
a weighted average of the solar cells, cover glass, metal backing and adhesives.  The wiring for the solar cells on 
each section was added to this layer as a smeared mass.  During the drag passes the solar cell side was oriented away 
from the direction of flight, so that the bare graphite side, often referred to as the “hot”  side, received the aerody-
namic heating.  The finite element mesh on the facesheets was customized to take the thermal sensor locations into 
account. 

The models were highly detailed and included the variations in the aluminum honeycomb core density, the varying 
thickness of M55J composite doublers, and varied optical properties. An example of the varying thickness facesheet 
on MGS is shown in Figure 8.  The titanium hinges and dampers that physically connect the solar panels were in-
cluded in the models.  For all materials, properties were included as functions of temperature; for the aluminum 
honeycomb core and M55J facesheets, orthotropic material properties were included.  The spacecraft thermocouples 
were modeled as bar elements which had mass and were thermally connected via a contact resistance.  Overall, each 
PATRAN thermal model was a physically accurate 3D representation of the solar array.  The mass of each overall 
model was verified by a comparison with the as-built mass from flight assembly records.  For MGS, the as-built 
mass of only the modeled portion was roughly 26 kg, while the mass of the total thermal model was 23 kg, for an 
error of 11%.  Some inaccuracy in this model was tolerable since it was a post-flight model, not used for operations.  
For Odyssey, the as-built mass of the solar array was 32.3 kg, and the mass of the PATRAN thermal model was 33.4 
kg, a difference of only 3.4%.     

Boundary Conditions 

Boundary conditions included contact conductance between layers, convection, radiation, aeroheating, and solar and 
planetary fluxes.  The contact between layers was calculated as the effective conductance due to thickness of the 
materials themselves as well as the adhesive thickness.   

The radiation boundary conditions included both internal and external radiation.  Radiation through the aluminum 
core, from one facesheet to another, was applied.  The view factors from the Thermal Desktop spacecraft model 
were applied as fields in the appropriate regions, by mapping the viewfactors into the PATRAN model, as shown in 
Figure 9 for MGS and Figure 10 for Odyssey.  View factors to both space and the spacecraft were included.  Space 
temperature was fixed at 3 K during the exo-atmospheric portion of the analysis, and then was allowed to vary to 
simulate the Martian atmosphere/space combination during the drag pass. 



 

 
Figure 8.  MGS example: thickness definition on hot side facesheet (m). 

 
Figure 9.  MGS viewfactors to space from solar cell side. 

       

 (a) (b) 
Figure 10.  Odyssey view factors to space: (a) Thermal Desktop, (b) mapped to PATRAN. 

The aeroheating flux array was a function of both physical position on the array, and time within the drag pass.  The 
aeroheating was interpolated in both time and space onto the PATRAN model on the entire exterior.  User-
developed FORTRAN was used within PATRAN to accomplish this interpolation.  Example heating maps at a sin-
gle time point are shown in Figure 11 for MGS and Figure 12 for Odyssey.  On MGS, the inboard corners of the 
array received the highest heating, which was the reason for localized use of white paint and thickened Kapton.   



 

 
Figure 11.  Example of MGS aeroheating mapped to the PATRAN model (W/m2). 

 

Figure 12.  Example of Odyssey aerodynamic heating mapped to the PATRAN model (W/m2). 

THERMAL RESULTS 

The initial thermal runs for both missions showed differences from flight data, which were corrected through the 
process of correlating the model.  The initial thermal results for both missions, and the correlation process, are de-
scribed in detail elsewhere9,10. 

For MGS, the final corrected run to the pass 15 flight data is shown in Figure 13.  The solid lines are flight data, and 
the lines with data markers are model predictions.  The hottest thermocouple is predicted very well, and all others 
are conservative (i.e., prediction is somewhat too warm).  Another interesting comparison was the difference be-
tween the hot side and cell side sensors, both on the outboard and inboard panels.  This illustrates the model accu-
racy in both through thickness and lateral conduction, since the sensors were separated not only by the thickness of 
the panel, but also by most of the area of the panel as well.  The hot side to cell side differences for MGS are shown 
in Figure 14. 
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Figure 13.  MGS final correlation vs. flight data. 
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Figure 14.  MGS temperature deltas, hot to cell side.



 

Overall quality of the MGS model correlation was evaluated in several ways, which are listed in Table 1.  The pri-
mary measure of correlation was the change in temperature due to aerobraking.  This difference in peak temperature 
change between model and flight, regardless of the timing, is shown in the row "Difference in peak temperature 
change".  The worst value on a sensor was 4.4°C.  Another measure was the time difference between when peak 
temperature was reached between the model and flight, shown in the row "Difference in peak timing".  The differ-
ence in actual peak temperature is listed next in the table; differences of about 8°C reflect the inaccuracy of the start-
ing temperatures.  The RMS difference in the aeroheating temperature rise was calculated, which gives a measure of 
the accuracy of the model over all times, not just at the peak.  The worst RMS difference was 6.7°C.  The largest 
overall difference between prediction and flight over all time points was worst for T211 at 12°C.  The final row 
gives the error of the model as a percentage, based on the first row values (peak temperature rise).  If the RMS of 
these is taken, it gives an overall correlation error of 3%.  All these measures point to a robust model that reflects in-
flight performance accurately.  After this correlation, two other earlier passes were selected at random to run and 
compare with flight data, and these yielded similar correlation quality measures. 

Table 1.  Correlation Quality Measures for MGS 

 T210 T211 T212 T213 
Difference in peak temperature change (°C) -0.7 4.4 -1.6 -1.8 

Difference in peak timing (sec) -12.7 -0.7 -0.7 -0.7 
Difference in peak actual temperature 7.5 8.0 8.0 -2.8 

RMS difference in temperature change over time (°C) 2.6 6.7 2.1 2.9 
Largest difference by time point (°C) 5.5 12.0 4.4 6.2 

Difference in peak temperature change (%) -1% 4% -2% -2% 
 
The 3D thermal maps of the MGS correlated model are also useful to visualize the overall thermal condition of the 
array.  In all of these figures, the thickness dimension is exaggerated to improve visualization.  The initial predicted 
temperature gradient prior to the start of aerobraking is shown in Figure 15.  The white painted areas are shown to 
be effective in cooling the inboard corners of the array, which are expected to receive the highest aeroheating fluxes.  
The prediction at the time of peak temperature is shown in Figure 16.  The inboard corners have been effectively 
pre-cooled, so that they do not become the hottest parts of the array.  The mass of the hinges can be shown to locally 
slow down temperature rise.  The effects of the relatively high conductance along the facesheets, and lower conduc-
tance through the core, can be seen.   

A benefit of the full 3D model is that the maximum temperature prediction for each component or material can be 
calculated and compared with its maximum service temperature.  Since MGS had already undergone aeroheating at 
the time of this modeling, this capability was not of use to this program, but in general this information can be used 
in the design process as well as in the trajectory planning.  An example is shown in Figure 17.  All materials re-
mained well within their service limits, as expected since the aeroheating levels actually experienced were much less 
than the design target. 

 
Figure 15.  MGS thermal map prior to aerobraking (°C). 



 

   
 (a) hot side  (b) cell side 
Figure 16.  MGS thermal map at 70 sec (near peak temperature) (°C). 
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Figure 17.  MGS material maximum predictions. 

The Mars Odyssey correlation benefited from all the lessons learned on MGS, and also utilized flight data from orbit 
maneuvers enroute to Mars to improve correlation prior to aerobraking.  After aerobraking started, additional ad-
justments were made to improve correlation.  Figure 18 shows orbit pass 106 with all of the correlation adjustments 
applied.  The mid panel thermocouple, T3, matches the flight data exactly.  The difference between the facesheet 
thermocouples (T1 & T4) and the flight data was reduced to less than 10°C for the duration of the drag pass.  There 
is still some overshoot error between the cell side thermocouples, T2 and T5.  T3 matching the flight data as well as 
it does is an indication that overall, the through panel conductance was correlated very well.   
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Figure 18.  Odyssey reconstructed temperatures, orbit pass 106, using the best correlated thermal model. 



 

The difference between flight and prediction for the cell side thermocouples T2 and T5 may be explained by the 
local conductance at those locations.  The solar cell side was modeled as a single, continuous layer of material.  In 
reality, the solar array has wires, solder, and some spots where there are no solar cells.  The thermocouples T2 and 
T5 are in regions without solar cells, so they are mounted directly to the Kapton layer. Locally, there is less mass, 
and most significantly, lower solar absorptivity.  Lower solar absorptivity in these local regions would reduce the 
amount of solar and planetary heat flux and thus reduce the temperature in these regions as observed in the flight 
data. The difference in local absorptivity was not modeled, but for future missions certainly should be. 

As mentioned previously, Odyssey encountered the highest density of the mission on orbit pass 106, and hence this 
was the orbit pass with the largest aerodynamic heat flux.   The higher heat flux intensified the effect of not includ-
ing the local differences in solar heat flux.  Looking at only orbit 106 can be deceiving because the differences be-
tween the flight data and the thermal model are maximized – in general, the differences throughout the mission were 
not this great.    
Table 2 summarizes the average differences in peak temperatures for each thermocouple at three different points 
during the main phase of aerobraking and gives the overall mission average.   
Table 2 shows that for the most part, the thermal model matched the peak flight thermocouple temperatures quite 
well – usually within 3°C.  The peak temperature is the most critical, since those are the values used to set the drag 
pass heating flux levels.   
 
Table 2.  Summary of Peak Temperature Differences between Odyssey Flight Data and Thermal Model 

 Average Peak Temperature Difference (°C) 

Sensor 
Orbits 

005 - 019 
Orbits 

020 - 095 
Orbits 

096 - 225 
Mission 
Average 

T1 4.1 3.1 2.1 2.90 

T2 3.2 1.7 4.6 2.97 

T3 0.1 0.2 0.2 0.16 

T4 3.8 3.6 3.3 3.47 

T5 6.5 6.9 9.2 7.53 

 

Taking a closer look at the temperatures over the entire drag pass, a root mean squared (RMS) average for each 
thermocouple over the duration of the drag pass was computed.   Table 3 shows the RMS average for each thermo-
couple at three points during the main phase of aerobraking.  The RMS average provides a somewhat better means 
with which to assess how close the model was coming to the flight data for the duration of each drag pass and also 
gives some insight into the progression of the correlation over the mission.  This view of the entire transient shows 
that the thermal model still matches the flight data extremely well, albeit not as well as only comparing the peak 
temperatures.  Combining all of the thermocouples into one average, the average difference in the peak temperatures 
over the entire mission was 3.4°C.  The average RMS temperature difference over the entire mission was 5.0°C.  
 
Table 3.  Summary of RMS Temperature Differences between Odyssey Flight Data and Thermal Model 

 RMS Temperature Difference (°C)  

Sensor 
Orbits 

005 - 019 
Orbits 

020 - 095 
Orbits 

096 - 225 
Mission 
Average 

T1 7.2 6.2 4.3 5.90 
T2 4.6 4.1 5.4 4.70 
T3 2.0 3.1 1.9 2.33 
T4 6.9 6.5 5.6 6.33 
T5 3.9 3.7 5.7 4.43 

 
Figure 19 shows the predicted temperature distribution on the Odyssey arrays for orbit pass 40, just after periapsis, 
which is typical of the majority of the drag passes encountered.  This temperature distribution was calculated using a 
predicted density, and velocity profile, and assumed a nominal orientation relative to the atmosphere.  A transient 
plot was generated for each material, where the maximum predicted temperature for any location on that material is 
tracked.  Figure 20 shows the maximum material temperatures as a function of time.    



 

 
Figure 19.   Odyssey predicted temperature distribution on the solar array for orbit pass 40 (°C). 
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Figure 20.  Odyssey maximum predicted material temperatures, orbit pass 040, peak heat flux = 0.232 W/cm2. 

IMPROVEMENTS TO THE METHODOLOGY 

Two improvements have recently been made to these methods: consolidating the orbital heating process to allow 
multiple configurations in a single run, and simplifying the aeroheating interpolation process. 

During these modeling efforts, it was evident that accurate prediction of the initial temperatures was extremely im-
portant in predicting the actual peak temperature in the solar array.  The Odyssey model used in operations included 
a prediction of the initial temperatures, but it was not coupled to the temperature predictions for each drag pass.  The 
initial temperatures were determined when the spacecraft was in the vacuum phase and in its transition to the aero-
braking configuration.  Solutions for the view factors and orbital heating rates were obtained at several locations in 
the vacuum phase.  In particular, solutions were obtained when the spacecraft was in its vacuum phase configuration 
(Figure 7), after the solar array was in its stowed position, after the spacecraft slewed into the aerobraking configura-
tion (Figure 3), after the spacecraft passed into the eclipse region, and finally just prior to the start of the drag pass.  
Using PATRAN, and starting with a steady state solution for the temperatures with the spacecraft in the vacuum 
phase configuration, separate transient solutions had to be made between each of the above orbit event segments.  
Each transient solution used the prior solution’s final set of temperatures as their starting temperatures.  The tem-
peratures had to be calculated in this fashion because the original methodology could only incorporate one solution 
for view factors and orbital heating for any one single transient.  During the drag pass, the view factors were con-
stant and the orbital heating changed very little across the array, which made this implementation acceptable.  For 
each transient, the view factors and orbital heating field within PATRAN had to be modified and a new set of analy-
sis files had to be generated from within PATRAN.  This modification process was time prohibitive and therefore 



 

could not be performed for every orbit pass during operations.  The initial temperature prediction was updated on a 
weekly basis using the median orbit pass for that week.  This simplification, along with breaking the orbit up into 
separate transients, introduced inaccuracies in the initial temperature prediction.  To couple the initial temperature 
prediction to each drag pass and have it run as one transient requires some additional capability be incorporated into 
the user developed FORTRAN routine.  Thermal Desktop has the ability to output a text file that contains the node 
locations, along with the currently posted data set.  Text output can be generated for every orbit position, for both 
the view factors and the orbital heating, thus giving view factors and orbital heating as a function of time.  The 
FORTRAN was then modified to read these output files and perform a time interpolation, as well as a spatial inter-
polation between the Thermal Desktop mesh and the PATRAN mesh.  Since both Thermal Desktop and the drag 
pass trajectory information referenced periapsis as time zero, it was a simple matter to adjust the time scale and have 
the transient start at the desired point in the orbit in the vacuum phase and run through the completion of the drag 
pass.  Including the orbital heating as a function of time is straightforward and application to the PATRAN model is 
identical to the method for aerodynamic heating.  Including the view factors as a function of time requires changing 
the way radiation to space is calculated.  Normally, the user specifies a radiation boundary condition within 
PATRAN as just that.  PATRAN then builds a radiation network using the applied nodal subareas, the user-supplied 
view factors, and surface emissivity.  In the case of the current methodology, the view factors were supplied as a 
finite element (FEM) field.  To include these variable view factors, the radiation to space had to be applied as a heat 
flux boundary condition; making this heat flux negative produced the desired result of energy leaving the surface.  
To make the radiation calculation, the user FORTRAN was modified to include a radiative heat flux calculation us-
ing the classic radiation heat transfer equation.   

The second improvement was to eliminate the Matlab script used to process the DSMC aerodynamic heating data, 
and the trajectory data.  Originally, the Matlab script had to be run for every orbit pass, taking as input the current 
orbits atmospheric density and relative velocity as a function of time.  The script then performed a data mining func-
tion to extract the heat transfer coefficient (CH) from the DSMC database and make the heating calculation given by 
equation 1.  The script then wrote out files that included the time, the DSMC grid X,Y,Z location and the heating 
value at that location.  This was done to make use of the user FORTRAN that already existed to read and apply heat-
ing data in this format.  This method produces inefficiencies in the code since for every time step, and for every 
node that has aerodynamic heating, a bivariate spatial interpolation and an interpolation over time had to be made.  
Significant improvement can be made by mapping the DSMC data to the PATRAN mesh prior to any PATRAN run, 
in effect building a DSMC database that is referenced to the PATRAN mesh.  This was accomplished by using a 
Tecplot macro that performed a spatial interpolation of the DSMC data onto the PATRAN mesh.  This produced a 
text file for every density that contained the PATRAN node number along with the interpolated CH value.  The user 
FORTRAN was modified to read these files, read the time dependant trajectory data, and make the heat flux calcula-
tion using equation 1.  Then for every time step, and every node that has aerodynamic heating, the procedure is re-
duced to an interpolation over time to obtain the density, and an interpolation over density to get the CH value.  Both 
of these improvements were implemented and tested using Odyssey data, and produced temperatures that were 
within 0.1°C of the original runs.  These improvements have been incorporated into the thermal model for the Mars 
Reconnaissance Orbiter, the next spacecraft planning to aerobrake around Mars.    

CONCLUSIONS 

Full 3D thermal models of the solar arrays for both MGS and Mars Odyssey were developed.  Innovative methods 
were developed to integrate the true orbital heating, including shadowing, as well as aerobraking heating into the 
solar array thermal model.  Thermal predictions at sensor locations were compared to the flight data and good corre-
lation was obtained.  Measures of correlation quality were differences in peak prediction to flight peak, as well as 
the RMS difference.  Using these, model accuracy was in the range 3 to 6%.  Use of a fully physical correlated 
thermal model was important for several reasons.  Correlating the thermal model gave an overall snapshot of the 
entire aerobraking analysis process and how well each of the different disciplines’  analysis models were performing.  
Also, the entire thermal behavior of the array can be visualized, and maximum temperature predictions can be ob-
tained for each material.  More accurate thermal predictions allows more accurate setting of the thermal limit lines 
that determine the depth of each aerobraking pass, which can substantially improve the time required to achieve or-
bit, as well as the final orbit attained.  Improvements were made after these modeling efforts, which further stream-
lined the process.  For example, initial temperature was predicted more accurately by incorporating several vacuum 
phase configuration changes into a single transient thermal run. 
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ACRONYMS 

DSMC  Direct Simulation Monte Carlo  
MGS Mars Global Surveyor 
MLI  Multilayer insulation 
RMS Root-mean-square 
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